
17’ AD—50 3 1 110 CARPIESIE—NELLON UNIV P IT T !OUNSM PA D€PT OF STATISTICS F/S 20/6
I THf INVERTED COMPL[X 4ISHA kT DISTRIBUTION AND ITS APPLICATION T——ETC (U)

AUS 76 P SHAMAN N00011 76 C—0930
UNCLASSIFIED N—Ui • 

NI.

I _ _ IP!_UIU

~~
R~



I 5

I I• _ _

• 
• 

I 25 

~f((~
.4 

~~



-

DEPARTMENT

OF

STATISTICS

0 0
T~ i~ L~!2fl

Carnegie-Mel lon Unive rs ity
PITTSBURGH , PENNSYLVANIA 15213

I—
Approved for po~~ ~c

DiatributiOn UnI~xait.d

t -
~~ m,(,~.



The Inverted Complex Wishart
Distribution And Its Application

To Spectral Estimation

by

Paul Shaman

Technical Report No. 121
ONR Report No. 6
August, 1976

Research supported by the National Science Foundation
under Grant Number MPS75-08286

and by the Office of Naval Research
under Contract Number N00014-76-C-0930 (NR O)42-~67).

Reproduction in whole or in part is permitted for any purpose
of the United States Government. Distribution of this document
is unlimited.

D O

OCT 2~ ~~Department of Statistics
Carnegie-Mellon University L ~~~~~~~ ~

Pittsburgh, Pennsylvania 15213

/~(7~-.~~~~ -



Abstract

The inverted complex Wishart distribution is studied

and it~ use for the construction of spectral estimates is illus-

trated. The density, some marginals of the distribution, and

the first- arid second-order moments are given. For a vector-

valued time series, estimation of the spectral density at a col-

lectiori of frequencies and estimation of the increment’s of the

spectral distrib ution function in each of a set of frequency

bands are cor.~idered. A formal procedure applies Bayes theorem,

where the complex Wishart is used to represent the distribution

of an average of adjacent periodogram values. A conjugate prior

distribution for each paremeter vector is a product of inverted

complex Wishart distributions.

AMS 1970 subject classifications: Primary 62H10; Secondary 62M15,

62E15.

Key words and phrases: Complex Wishart distribution, inverted

complex Wishart distribution, multiple time series, spectral

density, periodogram, prior distribution, posterior distribution.
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1. Introduction

In multiple time series analysis complex multivariate

distributions are comzno~ily used to describe estimates of frequency

domain parameters. A review of complex multivariate distributions

and their application in time series has recently been given by

Krishnaiah [8]. The complex Wishart distribution, in particular,

was introduced and used by Goodman [14,5] to approximate the dis-

tribution of an estimate of the spectral density matrix for a

vector-valued stationary Gaussian process. In this paper the in-

verted complex Wishart distribution is studied and its use for the

construction of spectral estimates is illustrated.

Methods of spectral estimation typically involve pen-

odogram smoothing. The amount ana type of smoothing one performs

depend to a considerable extent upon prior knowledge of the spec-

tral density to be estimated. A method of incorporating prior

information about the shape and smoothness of a spectral density

into the formation of a spectral estimate has been given by

Shaman (9] for a univariate time series. Two types of finite-

dimensional parameters are considered , the spectral density ordi-

nates at a specified collection of frequencies and the amount of

power in each of a set o~ frequency bands. The method is condi-

tional upon the asymptotic distribution of periodograxn averages.

A formal procedure applies Bayes theorem, with a conjugate prior

distribution being a product of inverted gamma distributions.

The mean of the posterior distribution involves simple linear ad-

justinents of the periodogram averages, with coefficients deperidir.g

upon prior distribution parameters. Although the method is not 



genuinely Bayesian, it does permit one to incorporate prior in-

formation about the height and shape of the spectral density into

the construction of an estimate in a formal manner.

The spectral density estimation methodology just dis-

cussed is extended to a vector time series model in the present

paper. The asymptotic distribution of a set of nonove rlappiri g

periodogram averages is a product of complex Wishart distributions.

A conjugate prior distribution is a product of inverted complex

Wis hart distributions.

In Section 2 the density of the inverted complex Wishart

distribution will be derived, as well as some marginals of the dis-

tribution and its first- and second-order moments. Details of the

proposed use o±~ the inverted complex Wishart distribution in spec-

tral estimation are given in Section 3.

2. The Inverted Complex Wishart Distribution

Let X1,” ,X~ be ‘independent rx l vectors, each com-

plex normal with mean 0 and~ covariance matrix Z (see Wooding

[12] and Goodman [5]). Then the rx r  matrix

W = X~X~
j  ~1

where the asterisk designates conjugate transpose, has a complex

Wishar-t distribution with n degrees of freedom arid covariance

matrix Z, denoted W
~
(r,n,Z). The density is (Goodm an [51)

- 2 -



n 
W In_ retr (_Z

_I
W), n>r, W)O,

rr(n) IZ l -

where

Fr(fl) = 
~~r(r-1) ~j =1

is the complex multivaria te gamma function.

We wish to determine the density of V = W 1, an inverted

complex Wishart variate. The volume element associated with a

Herniitian matrix C = (cjkR+icjkl) is njdcjjRnk>jdcjkI
.

Lemma. Let X be an r x r Hermitian nonsingular matrix. Then

the Jacobian of the transformation Y = X ~~ is

Proof. Let A be an r x r complex nonsingular matrix. The

Jacobian of the transformation Y=AXA * Is ~AA
*I_ l’, by (2.8) of

Khatri [7]. The desired result follows from consideration of

dY = dX 1 =-X 1d X X ~~ = _ X ~~ dX(X *)_ l .

According to the lemma the density of V is

1~~1r~ etr(-V~~ ’) 
, n>r , V)O, (2)

rr(n) 1~~~~~ 1~~~~ 

r -

where ‘~=Z
1. Denote the distribution of V by W~~(r,n,y).

The marginal distributions of certain sets of elements

of V are also inverted complex Wishart. Let

(V 11 v12\
- I ,

\ V21 V22/
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where V11 is q x q ,  and partition ~( similarly. Cons ider the

distribution of V11. The method of derivation is that given by

Tiao and Zellner [10] for marginals of the inverted Wishart dis-

tribution, modified for the present complex case. The Jacobian

of the transformation from V12, V22 to G, H,

G = Vj~~V12~ H = V22

is ~~11~ 2(r_ q) , from (2.3)  of Khatri [7]. Then the marginal

density of V11 is seen to be

n-r+q -i

F t 
~ 

n-r+2q 1< q< r< n , ~~~~~~
~n q, 11

That is, 
~~ 

is W~~(q,n—r+q,~’11). When q=1, Vil has the in-

verted gamma distribution with density

n- r+1exp(—~ /V

r(n-r+1) ~~
n_r+2 ‘ - ‘ 11

Next we consider first- and second-order moments of V.

The derivation follows that given by Kaufman [6] for the real in-

verted Wishart distribution. The method is to write the complex

Wishart matrix W as TT*, where T is lower triangular. The

joint distribution of the elements of T is easily obtained when

Z =1 and can be Used to derive moments of T 1 in the general case.

If the r x r Hermitian matrix W is written as TT*,

where P is lower triangular, the transformation from W to T
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has Jacobian

r 2r-2j+ 1
- j=1

(see Goodman [5], p.165). Then by (1) the density of T is

— 
2r 

~ 
2n-2J+1 etr(_Z~~TT*). (3)

r2,(n)tE I j=i. jj

When Z = I, (3) becomes

r(n-j+1) exP(_tj~ ) t3 
-2j+1~~ 

~ ~ex P (_ I t jk I 2 )
~ (14 )

which is the density of *r(r-i-1) independent random variables.

Specifically, 2t~~ is X2fl 2j+2’ j=1, , r, and tjk tjkR+itjkl

has a univariate complex normal distribution, j)k. The pair

(tjkR. tikl
) is bivariate norma). with mean 0 and covariance

matrix

The inverted complex Wishart matrix V = W ~~ is S~ S,

where S (S jk ) =T 1 is lower triangular. To clarify some later

discussion we denote W 1 by Y when Z =1, that is, when T

has density ( 14).
In terms of elements of T,

I

,

’ 
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I j=1,•~ • ,~~
‘,au =

5jk =~~~~~~ (_ U J k 
+ ‘

~~~~~ 
U

~~L~~X j k  - 

£2~~+1

(5)... 
~~+1,k) ’ J >k ,

where

- 
Ujk = t~~/t~~ , j > k .  (6)

When Z = 1 the distribution of (2n_2i+2)
~
ujk is com-

plex t with 2n-2j+2 degrees of freedom. The density of this

complex t variate with 1’ degrees of freedom is

g(u)  = ,~ Iu~~ 
~~~~~~~~~~~

2ir~~1+ ~ 
)

Some moments of the variables ~~~ t~~~ and Ujk when

= I are required. First note

, —2~ I — I
~ jj “ ~~i~~ ’ ~~ 

jj ~‘ 
= (n-j)(n-j-i) ‘

j=1, ”r, n)r+1.

The complex normal variables t jk satisfy

E ( I t jk I
2 ) = 1 ~ E ( I t jk I

4) = 2 ~ j > k , (8)

and these are the only nonzero moments up to order four. That is ,
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all odd moments of t~~ are 0, and moreover E(t~~) =0,

E(t~~) =E(tj~
tjk) = 0. For the Ujk variables, (7) and (8)

imply

/ 2~ I / 2E~ Ujk = ~~~~~~~~~~~~~ E~ Ujk = (n—j)(n-j-1) ‘

j)k, n)r+I,

and these are the only nonzero moments up to order four, as with

the variables tjk•

The elements of Y are

~jk 
= 

~gj
5gk ‘ j�1~ (10)

g=max(j,k)

By ( 14) - (6) and the discussion following (8), we see that
E(Sgj s~~) = 0, j 4k. Therefore

E(Yjk ) = 0 , j +ic. (11)

By ( 14) — (10),

g-1
2~ I I 1 1.~E~ 5gj = 

~~~~~~~~

. 

~~~ 
+ 

~~~ fl-L iL1 J+1

g-2 g-1

+ V V I I 1
L n-g n-L1 n~~2 

12
L2~j+1 L1=L2+1

+ + 1 •I I• n-g n-g+1 ~~
• •  n-j-1

- 

I 
--



It follows from (5) and (6) with t~~~=n-j, j=I, •- ,r, tjk~~
_l I

j>k, and (12) that the rxr matrix with elements E(ISgjI
2)

is the inverse of

n—i 0 0 ... 0

-1 n-2 0 ... 0

-i -1 n-3 ... 0

-1 -I -I ... n—r

which is 
-

I 
•
0 0 ... 0

1 I 0 ... 0

~n-1)(n-2)

- I 1 • I ... 0
(n-2)(n-3) (n-2)(ri-3 ) n-3

• . . . .

• * .

1 1. 1 1
(n-r+1)(n-r) ~n-r-i-1)(ri-r) (n-r+1)(n-r) “

~~~ n-r

Therefore

E(~~~) 
g
~
j
E(ISgjI

2)

r-j-1
+ 

~ 
(n-j-i)(n-j-i-I.J (13)

j j  
, 

• 
, r.

Evaluation of seco~id-order moments of the elements

of Y is much more difficult and tedious. From the above
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discussion it follows that

Cov(Yjk~YLm
) = 0 unless 

~~~~~~~ (14)
or j =m,k=L .

Lengthy direct calculations from (4) - (Ii) and (13) yield

Var(y J ) = 2 j=I,” ,r, n) r+ 1, (15)
(n-r) (n-r-1)

Cov(y 
~~~~~~~~~~ 2 , J~~1c, n >r + 1, (16)

(n-r+1)(n-r) (n-r-1)

and

COV(Yjk~Ykj
)= (rr+1)(fl

1
r)(fl r 1)~ 

j4k , n>r+ 1. (17)

Now let Z be an arbitrary Hermitian positive definite

matrix. Write Z =AA *, where A is lower triangular. If W is

Wc (r ,n,I), then AWA * is W
~
(r,n,Z). The desired inverse is

V=B *YB, where B=A ~~ and Y is W~~(r,n,I). Thus

Vjk = ~ ~~
bajYce

bakJ j,k=1,” ,r. (18)
a=j a=k

From (ii), (13) - (18), and some further manipulations we obtain

the desired moments of V, denoting = (cik),

E(V) = ç ~j~Z
1, n)r, (19)

c,jma~~ ÷~~~ a
jka2m

COV (V jkS VLm ) = , rl>r+ 1. (20)

- 9 -
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3. Application of the Inverted Complex Wishart Distribution

to Spectral Estimation

The methodology described below is based upon distribu-

tional approximations and we make assumptions which allow these

to hold. The conditions in Brilhlnger, [1] and [2], Chapters 5

and 7, in particular, are used.

Let X(t) (t=O ,+I ,”~~) be a vector-valued strictly

stationary stochastic process for which all moments exist. Denote

the components of X(t) by X~(t) (j=~t,
...,r), the mean by

E[X(t)1=m , and the spectral density by f(x) (-‘Tr (.X< Tr ) . The

cumularit functions of the process are

C 
~ 
(tl,•.• ,tk l ) = curn[X (t1+t),

...,X (t~~1+t ), x (-t))

~k-1

(j1=I,
...,r, i=1,...,k, tI+t~~.* ,tk I~

f
~
t, t=0, ÷1,~ ”,k=2 ,3, •••).

Assume for j~=1,
. ,r(i=I,. .. ,k) that

(k=2,3,•”).
tl •

~~~
tk_ 1_ ••

~ (21 )

This ensures the existence and uniform continuity of curnulant

spectra of all orders .

Assume a time series x(t) (t=0,I,...,T-I) is avail-

able. The periodograni is

(22)

~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
~~~~~~~ -—~~~~~~~~~ -.



where Z(X)=~~~~~ e
i)
~
tX(t) ( - 7 r < X < l r ) .  Let p=[j (T-1)1. ‘Then

I(2’irj/T) are asymptotically independent variables distributed

as W
~

(r ,1, f(2irj/T)) (j=i ,•. ,p) (see Brihhinger [21, Theorem

7.2 4). Also i(7r) is asymptotically an rx r Wishart variable

with one degree of freedom and covariance matrix f(’7r), and is

independent of the other variables. f m1’O, 1(0) is approxi-

mately an r x r noncentral Wishart variable with one degree of

freedom.

Restrict attention to frequencies 0<X< ’lr and let j(T)

be a sequence of integers such that 27rj(T)/T is near

and converges to x as T-’~~. Then

-a

- Z 2n+l 
h~~n

I[2
~
(J(T)+h)/T] (23)

is an estimate of f(~ ) and is asymptotically distributed as

(2n+Iy1W
~

(r ,2n+1,f(X)). If 
~ =0 (23) is replaced by

z =~~~~~ ~~I(2~rh/T), (24)

h=1

and if x= ’r ,

z = ~ I ( ’ir-2’irh/T ) (T even)

h=1
(25)

- ~ I(7r-7r/T-27rh~r) (T odd)

h-I
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is used. The complex Wishart was established as •a limiting distri-

bution for (22) and for (23) - (25) with fixed n by Brillinger [1]

for the case m = 0. For x 4~o, the asymptotic distributions of

1(x) and z are the same whether or not m=0 and in [2]

Brillinger treats an arbitrary m. Wahba [11] and Gleser and

Pagano [3] allow n-~~ under the assumption x(t) is Gaussian.

Under appropriate conditions , M nonoverlapping sums of the form

(23) are asymptotically independent complex Wishart matrices as

n, M, T-’o~. The covariance matrices of the asymptotic complex

Wishart distributions are

- 

2n+~ 
h=-n

where 2irj(T)/T converges to some x as T-~~oo .

Consider estimation of the spectral density at a fixed,

preassigned set of frequencies, 0< x1<... <X M
<l r . The choice of

M and the frequencies may involve use of prior information. For

example, if the spectral density is considered a priori to be

approximately constant in certain bands, the frequencies may be

interior points of the bands.

To avoid anomalous cases assume x1>0, XM < lr. Let

denote the right-hand side of (23) for 2n+I�r and

2’irj (T)/T near xL(~~
I, ”,M). Define z=(zl,...,zM) and

We use the asymptotic distribution of z

described above. Then z has density

- 12-



M M 2n+1-r

h(z (f) = 
(2~±1)(2n+1)r ~~ 

1z~~ 
2n+1 etr(_ f(XL)~~

(2n+1)zL)frr(2n+1)3 L=i If (x L ) I 
(26

(2n+l>r).

Then a conjugate prior density is a product of inverted complex

Wisharts,

M i.-ii l B I ‘
~
‘ etr[-f(X ) ~ 3

h(f) = — 
2 

a +r 
‘~ (a2�r , £=I, .. ,M). (27)

2

The posterior density from (26) and (27) is

2n+i+aM 
I (2n+1)z -+-e 2 1 £ etr[— f(x2)~~ ((2n+1)z2+B 3]

h(flz) 2n+r+1+~ 
£ 

, (28)
2=1 

~~~~~~~~~~~~~~~~~ 
2

a product of inverted complex Wishart densities. The mean of the

posterior occurs at f(~ 2) 
= C (2n-i-I)zt + B23/(2n+1+cz2-r) (j ~~i , . .. ,M).

Knowledge of the spectral density ordinate at each of a

number of specified frequencies can convey an accurate picture of

the shape of the curve. However, more basic interest may concern

the increments of the spectral distribution function in certain

frequency bands. Consider a partition 0=~ 0<~~1< •~~- < X M <X N+1 = ”
~

and let F(x) denote the spectral distribution function. Consider

the parameter 
~~~~~~~~~~~~~~~~ 

where p2 =F (~2)-F(~ 2 1 )

(~ —1,
...,M+1). The partition is fixed for all sample sizes. Let

k2(T)(L’.O,
...,M+I, k0(T) =1 , k~+i(T) [j(T— i)33 be integers such

that the frequencies 2n-j/T are in the interval (x21~x2) for

H — 1 3 -

_ _ _ _ _  _ _  

I
H - — — ~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~ 

____

I ~- 
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kL l (T) ( j < k2(T)—l and define in~(T) = k
L
(T)_ k~_1(T). Then

under the assumption (21) and the conditions in Wahba [11] or

Gleser and Pagano [3] the sums

y = I(2-wj/T) (L=l,...,M-I-l)

£ —1

are approximately distributed as independent r x r complex Wishart

variables with m
L(T) 

‘degrees of freedom and covariance matrices

i.
m
L(T) ja

~
CL l (T) 

(t=1,...,M+1).

We further approximate the distribution of y
~ 

as that of

Wc(r,m2(T), TPL/(27r1nL (T))) (L=1,...,M-I-1). Details of the transition

to a posterior distribution for the parameter p are similar to

those given at (26) - (28). One can restrict attention to a set of

frequency bands whose union forms a subset of [0,ir].
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the spectral distribution function in each of a set of
frequency bands are considered. A formal procedure applies
Bayes theorem, where the complex Wishart is used t:~ represent
the distribution of an average of adjacent per~odogram values.A conjugate prior I~ stribution for each parameter vector is a
product of inverted complex Wishart ~tstributions~~~~~
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